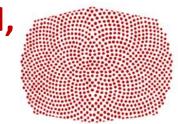


Centre for Artificial Intelligence, Robotics and Human-Machine Systems Canolfan Deallusrwydd Artiffisial, Roboteg a Systemau Peiriant-Dynol

uropean Regional


28th February 2024 – Bucharest, Romania

Barriers and Enablers to Measuring Human Trust within AI, Robotic and Autonomous Cyber-Physical Systems

Prof Phil Morgan: Human Factors & Cognitive Science

School of Psychology, Cardiff University, UK

morganphil@cardiff.ac.uk

School of Psychology

@CUDigiTransform

Director – Human Factors Excellence Research Group (HuFEx) Director of Research – Centre for AI, Robotics, & Human-Machine Systems (IROHMS) Human Factors & Cognitive Science + Transportation Lead: CU Digital Transformation Innovation Institute (DTII)

Director – Airbus Centre of Excellence in Human-Centric Cyber Security & Co-Director (H2CS) – Airbus & Cardiff University Partnership Guest Professor – Luleå University of Technology

Human Factors Excellence Research Group

Cardiff University School of Psychology

Psychology: ~Largest & best resourced in UK

- RAE/ REF (Research Excellence) top 10 since 2001
- >120 Academic, research & prof support staff
- BSc ~950, MSc ~150, PhD >120
- External funding (2014-2023): ≈ >£140m

CORE AREAS:

- Neuroscience (including £68M CUBRIC)
- Cognitive Science & Human Factors (since 1965)
- Developmental & Health Psychology
- Social & Environmental Science

Centre for Artificial Intelligence, Robotics and Human-Machine Systems Canolfan Deallusrwydd Artiffisial, Roboteg a Systemau Peiriant-Dynol

Human Factors Excellence Research Group

HuFEx

Augmented & Assistive Systems Cyberpsychology Defence & Security Emergency Services & Healthcare Humans in AI & Automation Transportation Human Factors

14 staff (HF, cog sci, social cog, neuroscience)12 PhD students (AI, automation, cyber security, emergency services, HRI, transport)

~£15m (30+ grants 2017+); ~£5m under review; Phil Morgan ~£37m (50+ grants)

IROHMS

Human-like AI

- Affective computing
- Augmented cognition
- Computational semantics
- Contextual reasoning

Ethical and Explainable AI

- Ethical AI
- Explainable AI
- Explainable robotics
- Trusted autonomy

Human-centred Technologies and Society

Cronfa Datblygu

Rhanbarthol Ewrop

European Regional Development Fund

- Human-centred computing
- Human-centred cyber security
- Emerging technology and society

Humans and Robots

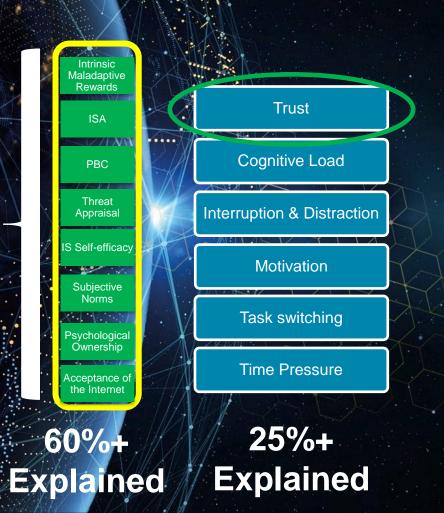
- Human-centred robotics
- Social robotics
- Robot perception/learning

AI for Collective Intelligence (AI4CI) EPSRC (UKRI): 2024-28

PhD Studentship: Learning to Trust Emerging Disruptive AI and Automated Technology Cardiff University - Psychology

Barriers & Enablers: Examples

RISK(S)

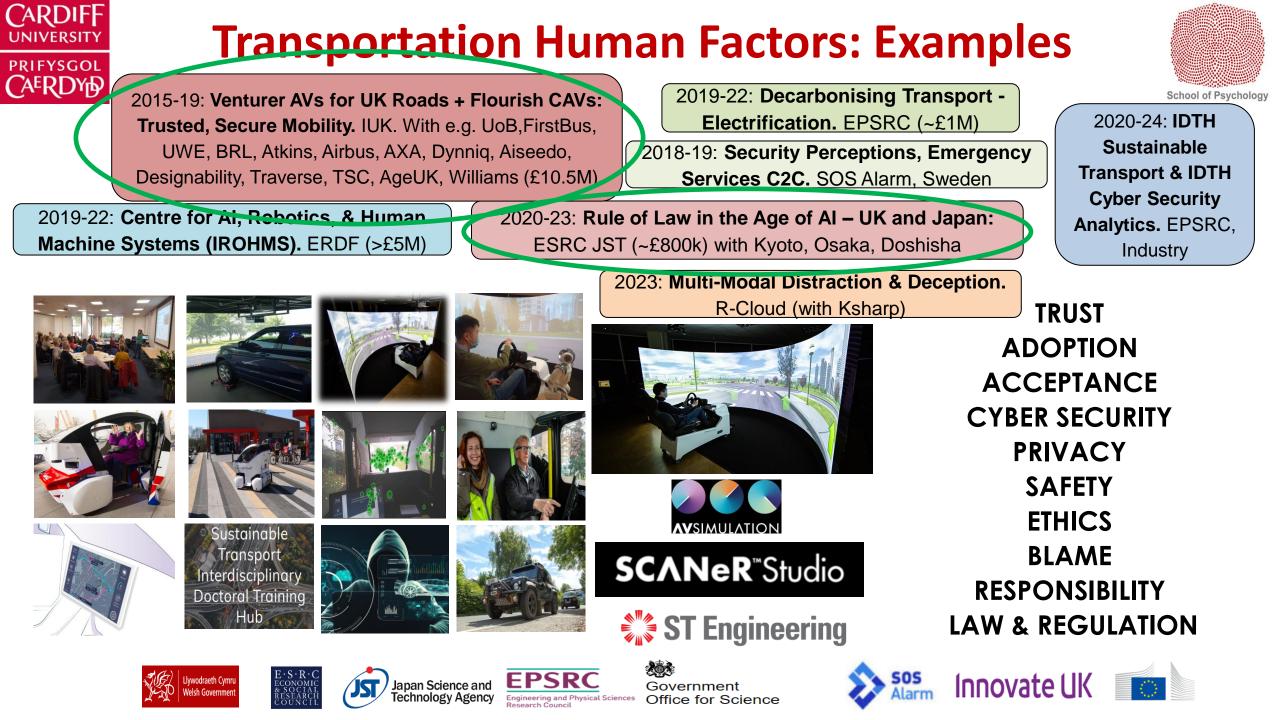


INCIDENTS / ACCIDENTS AWARENESS WORKLOAD TRUST (LOSS, RESTORATION) TRAINING TIME PRESSURE RELIABILITY BUY-IN (SELF, COMPANY, WORKFORCE **GROUP/DIVISION**) EXPERIENCE WORKLOAD COST (\pounds) / COST (OTHER) SITUATION AWARENESS **ACCEPTANCE** CHANGE CYBER SECURITY FUNDING TASK ALLOCATION PRIVACY MOTIVATION TEAMWORK SAFETY SELF-EFFICACY ACCESSIBILITY ETHICS SUBJECTIVE NORMS **ADOPTION USABILITY PSYCH OWNERSHIP** BLAME **FUNCTIONALITY** (MIS)UNDERSTANDING RESPONSIBILITY **ADAPTABILITY** PRESS & MEDIA **STANDARDS CONTINUED OPTIMAL** ASSISTIVE CERTIFICATION LANGUAGE & USE PRAISE NOT MISUSE, ABUSE COMMUNICATION LAW & REGULATION FEAR ETC. MISINFORMATION CULTURE AND MORE...

ATTITUDES

Example: Developing Metrics & Personas for Optimal Human-Centric Cyber Security

Human Cyber-Security Risk Tool



Airbus Partnership & Centre of Excellence in Human Centric Cyber Security

Venturer: AVs for UK Roads

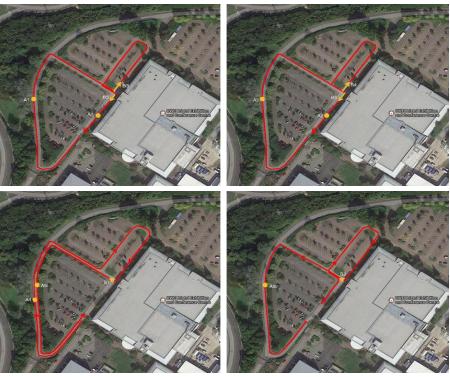
VENTURER: ~£5M IUK, 2015-18

HF: Performance, behaviour, individual differences, Situation Awareness, workload, trust, cyber – etc.

Handover of control in **urban settings** = key gap (e.g. Morgan, Alford, & Parkhurst, 2016)

Also: L3-4 (SAE): negotiating traffic, pedestrians, cyclists, responses to AV decision making...

Impact: AV design principles & standards (*safety*), insurance (*legislation, policy*), mobility (*services*), economy (e.g., 10-15k UK jobs - *employment*).



UNE Diversity Bristol England Humans & AVs - Trust aution?? Though subjective...

Scenario Type	Scenario Number	Scenario Description	Scenario Picture
A	1	Moving along an empty road at or below the speed limit.	
	3	Overtaking a parked car while leaving a safe distance margin.	
	4	Overtaking a parked car leaving a safe distance margin and waiting if necessary to leave a safe gap from an oncoming car.	
В	1	Turning right off the main road into the side road at a priority junction with no other vehicles.	
	2	Turning right off the main road into the side road at a priority junction with an on-coming vehicle approaching on the main road.	
	3	Turning left out of a side road onto a main road at a priority junction with no other vehicles.	
	4	Turning left out of a side road onto a main road at a priority junction with a vehicle approaching on the main road from the right.	
	5	Turning right out of a side road onto a main road at a priority junction with no other vehicles.	
	6	Turning right out of a side road onto a main road at a priority junction with vehicles approaching along the main road from both directions.	
	7	Turning in left into a side road from a main road at a priority junction with no other vehicles.	

Trial 2: Trust very high (slightly higher within the simulator). Higher during complex & risky maneuvers...!?

Trial 3. Cyclists, pedestrians & vehicle users; higher trust if AV gives way & cautionary.

Parkin, J., Crawford, F., Flower, J., Alford, C., Morgan, P. and Parkhurst, G. (2022). <u>Cyclist and pedestrian trust in automated</u> <u>vehicles: an on-road and simulator trial</u>. *International Journal of Sustainable Transportation*.

Level 4+/5 AVs: Flourish

FLOURISH: Innovate UK, £5.5M, 2016-19

Aims: CAVs & HMIs for those with highest mobility needs (older adults, mobility impaired) incl. as a service

Psych & HF areas: Simulation, usability & UX, trust, workload, SA, HMI design & HCI, cyber security, privacy...

Test **interface interaction & responses** incl. eye + HSM (with Airbus): *Stephenson, Eimontaite, Morgan et al. (2021) – Frontiers in Psychology: Performance Science; Voinescu, Morgan et al. (2020). Transportation Research: Part F.*

Impact: CAV interface design principles/standards (*safety*), insurance (*legislation, policy*), mobility (*services*), economy (e.g., 6-10k UK jobs - *employment*), transport as a service (+++)

Simulator, Pods, HMI

Design, testing, development & deployment of accessible, usable, functional, adaptable, safe, secure, and trusted human-machine interfaces for connected autonomous vehicles

Trust in CAVs $\leftarrow \rightarrow$ Trust in CAV HMIs

Voinescu, A., Morgan, P. L., Alford, C., & Caleb-Solly, P. (2020). The utility of psychological measures in evaluating perceived usability of automated vehicle interfaces – a study with older adults. *TR-F: Traffic Psychology & Behaviour 72*.

General trust in tech correlated with HMI usability (key variables in acceptance & attitudes towards AVs (e.g. Liu et al., 2019, Zhang et al., 2019)) & predicts intended AV use (Buckley et al. 2018).

BUT – no relationship with trust in the CAV / Simulator

Challenge: More experience needed (Ekman et al., 2016). Particularly for tech(s) yet to be experienced widely. Ensuring adequate user experience through learning pivotal for success.

PhD Studentship: Learning to Trust Emerging Disruptive AI and Automated Technology (Cardiff University – Psychology)

SIMPLICITY MINIMAL CLUTTER ADAPTABLE ADAPTIVE ROUTE ADVICE / UPDATES SYSTEM STATUS SPEED SAFE STOP SERVICE/HELP WHEN NEEDED EXPLAINABLE & UNDERSTANDABLE

Rule of Law in the Age of AI: Principles of Distributive Liability for Multi-Agent Societies

TEAM UK (with Profs Bill Macken (2020) & Dylan M Jones OBE (2022))

Prof Phillip Morga

Dr Qiyuan Zhang

Louise Bowen

Theo Kozlowski

TEAM JAPAN

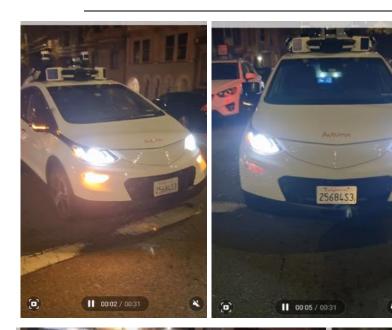
Victoria Marcinkiewicz

Which party is to blame?

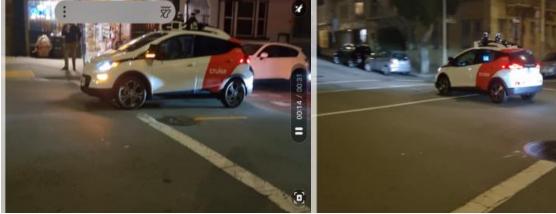
Prof Tatsuhiko Inatani

Prof Minoru Asada

Dr Hirofumi Katsuno

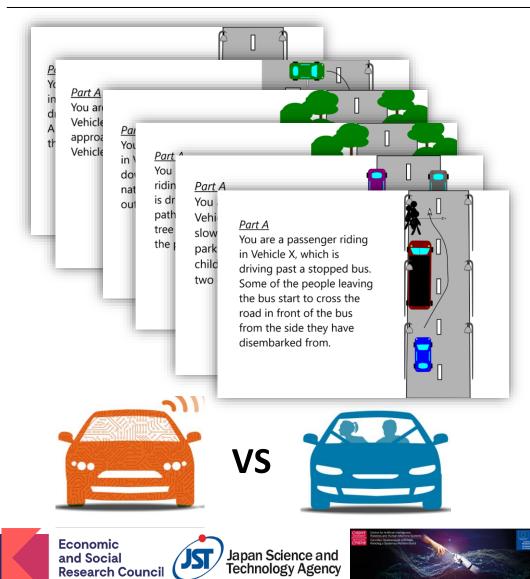


Self-Driving Cars are here...but...

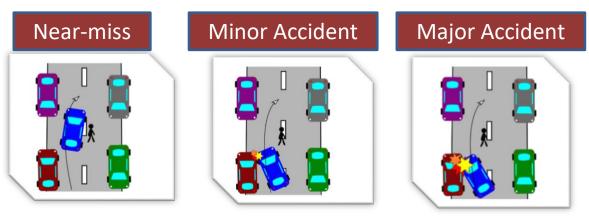


← San Francisco, July 2023 (Morgan, Marcinkiewicz et al.)

Waymo's driverless cars were involved in two crashes and 18 'minor contact events' over 1 million miles



GM's Cruise slashed fleet of robotaxis by 50% in San Francisco after collisions


By Samantha Delouya, CNN Updated 8:01 PM EDT, Tue August 22, 2023

Trust & Blame Before & After Incident

KK

UNIVERSIT

PRIFYSGOL

School of Psychology

KEY TAKEWAYS (2020-21/22)

- UK: AV blamed more & trusted less;
- Japan: Similar pattern but lower trust;
- Double standards: trust human driver more BUT blame higher vs AV if perceived to be taking a chance;
- 'Ironies': perceived tech & performance capabilities

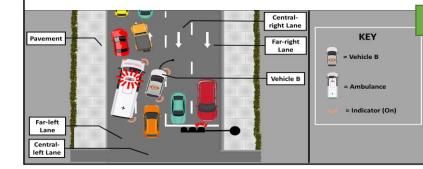
Zhang, Q., Wallbridge, C. D., Jones, D. M., & Morgan, P. (2021). The blame game: Double standards apply to autonomous vehicle accidents. *Lecture Notes in Networks and Systems*, 270, 308–314.
Zhang, Q., Wallbridge, C. D., Jones, D. M., & Morgan, P. (2024). Public perception of autonomous vehicle capability determines judgment of blame and trust in road traffic accidents
Zhang, Q., Wallbridge, C. D., Jones, D. M., & Morgan, P. (under review). Autonomous vehicle judged less risky and blameworthy relative to a human driver if driven assertively before an accident. *Transportation Research Part A: Policy & Practice.*

Anthropomorphism: Informational Assistants

Highly beneficial for trustworthiness when system(s) running flawlessly – although in incident / accident situations, trust can be damaged more due to the presence of a robot informational assistant

School of Psychology

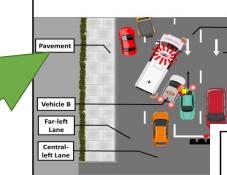
Pushing Boundaries



- SDCs cannot always stop (e.g. emergency situations, environmental factors) & may have / be expected to perform courteous actions;
- The technology is becoming capable;
- But there will sometimes be negative outcomes.

Part 2

Vehicle B does not stay in the central-left lane. It crosses the broken white line (in the middle of the road) into the central-right lane to give way to the ambulance.


According to the Highway Code, a broken white line marks the centre of the road. A vehicle can cross it if the driver can see the road is clear and wishes to overtake or turn off.

Part 3

The ambulance passes through. But Vehicle B is hit by a vehicle in the centralright lane, which is rolling back because its driver failed to apply the handbrake while waiting at the traffic light.

It is later revealed that if Vehicle B had stayed in the central-left lane, the ambulance would not have been stuck for a long time, and would not have been significantly delayed in its arrival at its destination.

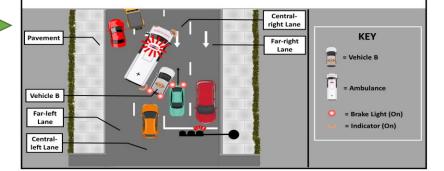
Negative (Accident)

Less Negative (Near-miss)

Central-

right Lane

Far-right Lane


Part 3

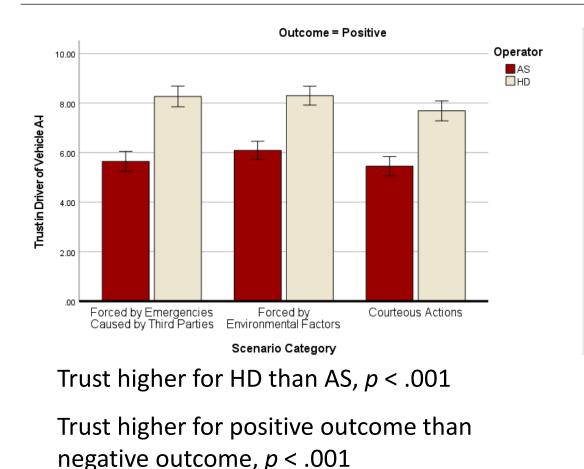
The ambulance passes through. But Vehicle B is nearly hit by a vehicle in the central-right lane, which is rolling back because its driver failed to apply the handbrake while waiting at the traffic light.

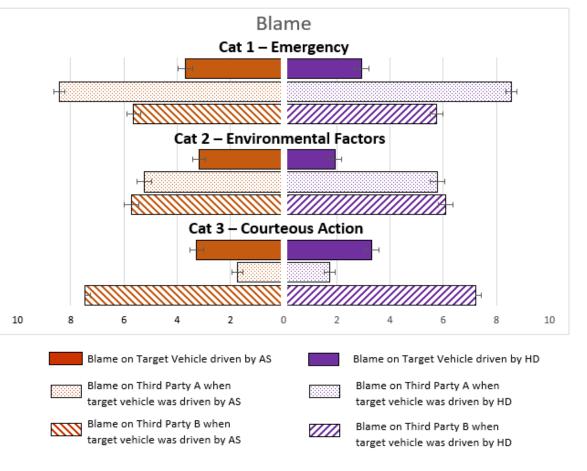
It is later revealed that if Vehicle B had stayed in the central-left lane, the ambulance would have been stuck for a long time, and would have been significantly delayed in its arrival at its destination.

KEY

= Vehicle B

Economic and Social Research Council





School of Psychology

PRIFYSGOL

Trust in Target Vehicle & Blame

AND: Trust in AVs increased post vs pre-experiment, especially with positive outcome

Cyber Security Aspects

Upfront trust in a CAV: impacted by CAV cyber security rating

Upfront trust in the CAV company: impacted by CAV cyber security rating

Trust in CAV and the company after a cyber-attack: *Plummets...can it be restored?*

Trust in CAV after a +/- response to a cyber attack: *Matters...but is it enough?*

Defence & Security: Recent Projects

2022-2023: Measuring Trust in Complex Sociotechnical Systems HSSRC – with Trimetis

2022-2023: Developing HF Guidelines for Robots & Autonomous Systems HSSRC – with QinetiQ & BAE Systems 2023-25: Multi-Modal Interruption & Distractions R-Cloud – with K-Sharp

RQs

Can changes to trust in AS be detected & measured via behavioural cues & responses, physio & selfassessment?

Experts vs novices.

Technical Approach

BMT; trust in system modulated by auto classifier accuracy (25%, 75%, 95%)

Example Findings

- Trust plummets after cyber-attack & remains low in 25% & 75% conditions but not in 95% condition (restoration...)
- Evidence that subjective ratings do always correlate with objective physiological data!

Questions?

Centre for Artificial Intelligence, Robotics and Human-Machine Systems

Canolfan Deallusrwydd Artiffisial, Roboteg a Systemau Peiriant-Dynol

28th February 2024 – Bucharest, Romania

School of Psychology

Cronfa Datblygu Rhanbarthol Ewrop European Regional

Development Fund

IROHMS SIMULATION LAB

Cyber Security Data Visualisation & C2 EEG, EMG, Eye Tracking, HSM Igloo Immersive Dome Robots (Nao, Pepper, TIAGO) **Transport Simulator** VR (Incl. Virtualizers)

